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Abstract More than 45% of the pages that we visit on the Web are pages that we
have visited before. Browsers support revisits with various tools, including book-
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revisits to a small number of frequently and recently visited pages. Several browser
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article, we present a systematic overview of revisitation prediction techniques, dis-
tinguishing them into two main types and several subtypes. We also explain how
the individual prediction techniques can be combined into comprehensive revis-
itation workflows that achieve higher accuracy. We investigate the performance
of the most important workflows and provide a statistical analysis of the factors
that affect their predictive accuracy. Further, we provide an upper bound for the
accuracy of revisitation prediction using an ‘oracle’ that discards non-revisited
pages.
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1 Introduction

A large portion of our activities on the Web involves Web sites and Web pages that
we have visited before. We visit these pages for frequent tasks or routine behav-
ior, such as following the latest news, communicating with friends and shopping
online, but also for less frequent tasks or activities, such as planning the summer
holidays or finding reference material for the annual tax declaration [1, 40, 51].
According to various studies, these frequent and less frequent activities account
for 45.6% [40] to 81% [15] of all navigation on the Web. Browser features, such
as bookmarks and URL auto-completion, and browser extensions, such as Smart-
Favourites [11], support the users’ routine behavior and reoccurring tasks. They
pro-actively identify and recommend the pages that are most likely to be revisited
at a certain point in time, using revisitation prediction techniques that exploit
recurrent navigation patterns.

In this article, we discuss and build upon existing prediction techniques for
providing personalized revisitation support. We distinguish these techniques in two
main types. The first type comprises a-priori prediction techniques, which estimate
the probability of each page to be revisited in the next page request based on the
recency and/or the frequency of its use. The second type encompasses a-posterior

prediction techniques, which identify groups of pages that frequently co-occur within
the same session. We elaborate on the characteristics of these main types and group
the corresponding techniques into subtypes based on their common functionality.
For example, the page associations captured by a-posterior techniques consider
all evidence accumulated with the passage of time, even if they are outdated. A
subtype of a-posterior prediction techniques, called propagation drift methods, takes
into account the changes in user interests, tasks and routines by emphasizing recent
activity in the prediction process.

A common aspect of the above-mentioned methods is that they rely on infor-
mation that can be automatically extracted from the user’s navigation history.
This information includes:

– the sequence of page requests,
– the time they took place, and
– the sessions they belong to.

Another source of information about the user’s navigational preferences involves
details on the demographics, preferences, interests and background knowledge of
the user [12]. These can be explicitly provided by the users themselves - for example
by filling out a profile or by building a collection of bookmarks - or they can be
derived from external sources, such as user activity in social media. However,
evidence of this kind is rarely available in practice, as it either requires too much
effort from the user, or might lead to privacy issues. For this reason, we limit our
discussion to methods that exclusively exploit the user’s navigation history.

Following the discussion on the different types of individual revisitation predic-
tion techniques, we show how they can be aligned into comprehensive workflows,
with each step targeting a different aspect of revisitation. The first step comprises
ranking methods, which correspond to the a-priori prediction techniques. Ranking
methods operate as scoring functions that associate each page with a numerical
estimation of its probability to be re-accessed in the next page request. The second
step encompasses propagation methods, which employ a-posterior prediction tech-
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niques to create weighted connections between pages that users revisit together.
They determine the ranking of each Web page based on how often it is revisited to-
gether with the currently visited page - or based on a set of recently visited pages.
The third step consists of propagation drift methods, which update the weights
of page associations so that they reflect changes in the activities and interests of
Web users. As our experimental results show, revisitation workflows that combine
these three different types of revisitation techniques, achieve substantially higher
predictive accuracy than the individual techniques.

To examine the actual performance of the individual methods and the revisita-
tion workflows, we launched the Web History Repository initiative1. We managed
to gather a large dataset of real data from individual users, who voluntarily con-
tributed their navigation history, as recorded by their Web browsers. The collected
data is completely anonymized, posing no threat to the privacy of the contribu-
tors and is freely available to any interested researcher, forming a valuable test-bed
for the research community. Additionally, we experimented with another, smaller
dataset that dates from 2005 [52]. A comparison of these two datasets, which stem
from two different periods, provides some useful insights on how the evolution of
the Web affects the navigational activity of its users.

In our experiments with both data collections, we measured the performance
of the revisitation workflows based on their effectiveness and their efficiency. Ef-
fectiveness measures to what extent the revisited pages were covered in the top-N
ranking positions, efficiency captures the computational cost in terms of the aver-
age time required for producing the list with the N best candidates for revisitation.

We also carried out a statistical analysis of our experimental results to obtain
further insights into the main parameters that affect the performance of revisita-
tion workflows. The outcomes show the high impact of the entropy in revisitation
patterns: a low entropy indicates users that access a small number of Web pages
on a regular basis, while a high entropy characterizes users who have a large set of
pages that they revisit on an infrequent basis - the latter is inherently more diffi-
cult to predict (cf. Section 5.1.3). A second critical parameter is the composition
of the URL vocabulary, the set of pages visited thus far. The continuously growing
URL vocabulary can be divided into two subsets: the pages that have been or will
be revisited by the user, and the set of pages that will never be revisited again. The
latter set of non-revisited pages occupies the largest part of the URL vocabulary
and should ideally be excluded from the prediction process in order to increase
both effectiveness and efficiency. To quantify the effect of this phenomenon, we re-
peated our experimental evaluation using an oracle, an ideal classifier that is able
to identify a-priori all pages that will never be revisited again after their first and
only visit. In this way, we empirically estimated an upper bound for the perfor-
mance of the main revisitation workflows and assessed how closely they approach
it.

We conclude our experimental analysis with a discussion about the best re-
visitation workflow for each application, depending on its requirements and its
available resources. We also explain why it is difficult to a-priori predict the best
workflow for every user. Instead, we demonstrate that the workflow with the best
average accuracy across both datasets achieves near-optimal performance for most
users. Thus, it is suitable for applications that require high accuracy and can afford

1 See http://webhistoryproject.blogspot.com.
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a higher computational cost. Finally, we discuss the feasibility of approximating
the functionality of the oracle.

To summarize, the contributions of this article are the following:

– We provide a systematic overview of revisitation prediction techniques, divid-
ing them into a-priori and a-posterior techniques. Together with the propaga-
tion drift methods, they form three complementary types of techniques that
can be combined into comprehensive revisitation workflows of high predictive
accuracy.

– We present the results of an experimental study that examines the effective-
ness and the efficiency of 25 revisitation workflows over two large, real-world
datasets that in total comprise more than 2.6 million page requests from 205
distinct users. As the data collections differ in age by 7 years, the results of
our analysis provide insights into the impact of the evolution of the Web on
revisitation patterns.

– We perform a statistical analysis that identifies the parameters with the largest
impact on the performance of a revisitation workflow. Apart from differences
in entropy between individual users, the large set of non-revisited pages also
affects effectiveness and efficiency to a significant extent.

– To estimate an upper bound of each workflow’s performance, we cancel out
the impact of non-revisited pages by using an oracle that identifies them with
100% accuracy.

The remainder of the paper is structured as follows. In Section 2, we discuss
related work, which consists of studies that examine revisitation on the Web and
tools that aim to facilitate it. In Section 3, we give a formal definition of the
task of revisitation prediction and the data associated with it. In Section 4, we
discuss the main types of revisitation prediction methods and show how they can
be combined into comprehensive workflows. Section 5 presents the experimental
results and statistical analysis of the prediction methods, while Section 6 concludes
the paper and provides directions for future work.

2 Related Work

In this section, we elaborate on two major lines of research in revisitation: stud-
ies that investigate revisitation patterns in the navigational activity of Web users
(Section 2.1) and tools that exploit these patterns in order to predict and facil-
itate revisitation (Section 2.2). Related work on revisitation prediction methods
is discussed in Section 4, for easier comparison with methods that use similar
techniques.

2.1 Revisitation Studies

One of the first studies on Web usage behavior was performed by Tauscher and
Greenberg [49]. They quantified to what extent Web users carry out recurrent
tasks on the Web and confirmed Catledge and Pitkow’s [13] finding that following
hyperlinks and clicking the back button are the most frequently used methods for
re-accessing a Web page. In contrast, the temporally ordered history list is rarely
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used. They also coined the term recurrence rate, which expresses the probability
that any page visit is a repeat of a previous visit. According to their estimations,
the average recurrence rate for their participants amounted to 58%, while the
reanalysis of the data from the Catledge and Pitkow study yielded a recurrence
rate of 61%.

The same study also demonstrated that the URL vocabulary grows linearly
with the number of page requests. Two important characteristics of revisited pages
were also described: first, the probability for a page to be revisited decreases steeply
with the number of page requests since the last visit to it; this implies that most
page revisits involve pages that a user visited very recently. Second, the probability
for a page to be revisited decreases steeply with its popularity ranking. As a result,
there is a small number of highly popular pages that are visited very frequently.

Another long-term click-through study was carried out by Cockburn and McKen-
zie [15]. They observed that browsing is a rapidly interactive activity: the most
common time interval between subsequent page visits is around 1 second, while
time intervals of more than 10 seconds are rather scarce. They also analyzed book-
mark collections, revealing that most users have or will have problems with their
organization, due to their constantly increasing size.

More recently, Weinreich et al. [52] carried out a long-term study, in which
they analyzed the interactions of 25 users with their Web browser during a period
of four months and compared the results with the studies discussed above. They
demonstrated that the introduction of new browser features had a dramatic im-
pact on the way users navigate the Web. For example, tabbed browsing has been
established as a useful alternative for hub-and-spoke navigation that replaces back-
tracking to a significant extent. Another major factor is the evolution of the Web
from a repository of rather static hypermedia documents to a platform focused on
interaction and transactions.

Based on user action logs and interviews, Obendorf et al. [40] distinguished
revisits into those occurring within an hour (short-term), within a day (medium-

term) and within a week or longer (long-term). Short-term revisits were observed
to be primarily initiated through the back button and to involve portal pages
and other navigational pages. Medium-term revisits mainly refers to pages that
users visit on a regular basis, such as the portal page of search engines, news
sites, shopping sites or reference sites. Browser tools that were commonly used for
medium-term revisits are bookmarks and the URL auto-completion. For long-term
revisits, browser support was of little use and users often had to repeat the search
for the required page, or retrace their previous trails to the page.

Adar et al. [1] further investigated revisitation behavior, making use of a large
user base that was collected via the Windows Live Toolbar. They found that short-
term revisits are related to hub-and-spoke navigation while visiting reference or
shopping sites or pages on which information is monitored. Medium-term revisits
correspond to Web mail, forums, educational pages as well as browser home-pages.
Long-term revisits involve pages found via search engines and usually pertain to
weekend activities, such as going to the cinema. A subsequent study was carried
out by Tyler and Teevan [51], based on a merged dataset of search engine logs,
Web browser logs and a large-scale Web crawl that comprised several millions of
users. The results confirmed earlier findings, advocating that within-session revisits
typically aim at continuing work on a task or a routine behavior. In contrast,
revisits that occur across different sessions (cross-session revisits) mainly involve
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re-evaluation (e.g., “Did I remember the information correctly?”, “Did something
change?” or “Has something new been added?”).

The above observations were confirmed by Kumar et al. [32], who used a ran-
dom sample of users drawn from Yahoo! toolbar logs to compare pageview cate-
gories for two kinds of revisits: regular revisits, which take place within a week,
and long-term revisits, which occur within a week, but have not been repeated
during the last 24 hours. They found that about 50% of Web navigation involves
sites delivering content (news, multimedia, vertical content, games); around 35%
of Web activity is dedicated to communication, mainly through social networks
and email, and search accounts for 9% of Web navigation. Page revisits are rarely
achieved with just one query; instead, after a query, users typically have to follow
a trail of pages to reach the desired location.

2.2 Revisitation Support

Web browsers incorporate a versatile set of history mechanisms, including book-
marks, the URL auto-completion, the forward and back buttons and the history
sidebar [35]. The use of multiple tabs can be considered as an implicit history
mechanism, as well. However, as discussed in the previous section, the support
offered by these tools is typically skewed toward a small set of frequently visited
resources and therefore suboptimal [40].

For this reason, browsers like Mozilla Firefox2 and Google Chrome3 allow users
to install extensions that offer improved and more dynamic revisitation support.
Notable add-ons that are relevant to our work include – in no particular order
– Delicious4 (social bookmarking), Infoaxe5, Hooeey (full-text history search),
WebMynd6 (history sidebar for search) and ThumbStrips (history visualization).
In addition, many search engines currently offer personalized search, which greatly
facilitates refinding [28].

Academic research has also delivered several alternative history mechanisms,
including gesture navigation [15], dynamic bookmarks [48], a SmartBack button
that recognizes waypoints [36], a browsable SearchBar organized around a hierar-
chy of past queries [39] and many types of history visualizations: lists, hierarchies,
trees, graphs, 2d and 3d stacks and footprints. A comprehensive overview of these
tools is provided in [35].

However, none of these approaches seems to consider all regularities that have
been discovered by the aforementioned revisitation studies. Due to the power-law
distribution of revisitations, their recommendations typically exhibit high levels of
stability, biased towards popular and/or frequently accessed pages. The evolving
traits of user’s navigational activity, though, introduce a clear trade-off between the
stability and the usefulness of revisitation recommendations: the more stable the
predictions offered by a revisitation support tool, the more likely it is that a Web
user will anticipate its recommendations and make use of them; as a consequence,

2 http://www.mozilla.com/en-US/firefox.
3 https://www.google.com/intl/en/chrome/browser
4 http://www.delicious.com
5 http://infoaxe.com
6 http://www.webmynd.com
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though, this results in a limited coverage of the visited pages, thus facilitating only
the most common situations and needs. In contrast, dynamic recommendations can
achieve a better balance between recency and frequency, and may exploit typical
navigation patterns to provide recommendations for particular situations.

In an earlier study, we demonstrated the benefits of dynamic recommendations
through the evaluation of a dynamic browser toolbar, called PivotBar [29]. The
PivotBar resembles the common bookmark toolbar, containing favicons and links
to the 10 pages that were most likely to be revisited. Unlike static toolbars, the
content of the toolbar changed with each page visit and provided personalized
suggestions specifically related to the currently visited page. The recommendations
were generated using the best workflow of our framework (see Section 5.2.1). All
computations took place on the client-side, exploiting the user history that is
recorded in the browser’s database.

The take-up and usability of the PivotBar was evaluated with 13 participants
during a period of 10 days. On average, 12.1% (σ=7.3) of all revisits were initiated
through the PivotBar. We also measured the number of ‘blind hits’, situations in
which the revisited page was displayed in the toolbar, but the user employed a
different method for accessing the page. The average percentage of blind hits was
18.1% and the differences in blind hits between each user was strongly correlated
with the individual user’s take-up of the tool (r = 0.92, p < 0.01). This confirms
that good recommendations are essential for the take-up of revisitation support
tools.

In Section 4, we present a structured overview of revisitation prediction tech-
niques that exploit most of the identified patterns. These techniques typically lie
at the core of tools that provide dynamic short-cuts, page recommendations or
other kinds of revisitation support.

3 Data Model & Problem Definition

Revisitation is the act of accessing a Web resource that has already been visited
in the past. As explained above, this is a common practice among Web users,
accounting for at least 45% of the overall Web activity [40] and up to 80% of the
mobile Web activity [34]. Therefore, user experience can be significantly enhanced
by supporting these recurrent activities. The task of predicting the subsequently
revisited page is called revisitation prediction.

Any kind of evidence can be involved in this task. Potentially useful information
ranges from content-based data, like the URL and the content of the accessed
pages, to demographic information, such as the gender and the age of the user. To
ensure the generality of our work, we do not rely on external information, such
as the meta-data about Web users or their navigational activities. Instead, we
consider methods that exclusively rely on the information that is inherent to the
users’ navigation on the Web, receiving as input the chronologically ordered set of
visited pages, grouped into sessions.

More formally, the navigation history of a user is represented by R = {r1, r2, . . . ,
rn}, where ri is an individual page request. The page request ri returns the page pj
that was retrieved during this visit, the time ti the request took place as well as the
corresponding serial number i, which indicates its relative position in the overall
activity of the user – regardless of the corresponding session (cf. Definition 3); that
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is, the serial number of the chronologically first request is 1 and is incremented
by 1 for each subsequent page visit. The set of all individual Web pages visited
during R (the URL vocabulary) is denoted by P = {p1, p2, . . . , pm}.

Given that revisitation prediction techniques typically operate on the level
of individual Web pages, they (re-)organize the information contained in R into
navigational data per page. There are two structures that actually lie at the core
of their functionality:

Definition 1 Given all page requests R of a user, the request indices of a page
pi (Ipi) is the set of the serial numbers of those requests in R that pertain to pi.

Definition 2 Given all page requests R of a user, the request timestamps of a
page pi (Tpi) is the set of timestamps of those requests in R that pertain to pi.

The request indices are essential for revisitation prediction techniques that
interpret users’ navigational activity as a series of events, disregarding the time
they actually took place. In contrast, time-based approaches rely exclusively on
request timestamps. In the middle of these two extremes lie hybrid predictive
methods, which incorporate both types of evidence into their functionality.

Another important aspect of a user’s navigational activity is the notion of
session, i.e., the collection of pages visited by a user in sequence during a specific
period of time. There are two ways for defining a session: either on-line or off-
line. In the former case, sessions are internally defined by browsers. For instance,
Mozilla Firefox starts a new session when the user opens a new empty tab, a
new empty window or after a certain time of inactivity; following links into a new
window or a new tab is still considered part of the original session. The off-line
identification of sessions is typically used for server-log and client-side analysis.
The only information that is available in this context is the sequence of page
requests and the time they took place. Therefore, sessions are usually defined as
a continuous period of browsing. A common heuristic for identifying the start of
a new session is a timeout of 25.5 minutes [13, 26, 40, 49]; a new session starts
after the user remains inactive for 25.5 minutes. Following this practice, we define
sessions as follows:

Definition 3 A session is a bag S = {p1, p2, . . . , pk} of all pages visited by a user
that follows links during a specific time period, placed in chronological order, from
the earliest visit to the latest visit.

Note, though, that this definition does not distinguish between task-related
and task-unrelated tabs and/or windows. All page requests falling in the same
time frame are assigned to the same session without any exceptions.

Based on the above definitions, the problem that we address in this paper can
be formally defined as follows:

Problem 1 (Revisitation Prediction) Given the set of Web pages P that have been

accessed during the past page requests of a user (R), order them in such a way that the

ranking position of the page pi ∈ P that she will re-access in the next revisitation is

the highest possible.

The recommendations for the next revisited page can be presented to the user
through any revisitation support tool, such as URL auto-completion. However,
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interface issues lie out of the scope of our work. Instead, we exclusively focus on
the functionality of the predictive mechanisms that lie at the core of such tools.
Note that these mechanisms do not aim at recommending not-visited, yet relevant
Web pages; they merely facilitate the access to pages already viewed in the past.

4 Revisitation Prediction Methods

In this section, we give an overview of common and current methods for revisita-
tion prediction on the Web. We separate them into two main categories: a-priori

prediction methods, which rank pages based on the overall probability that they
will be revisited, and a-posterior prediction methods, which rank pages based on the
probability that they will be revisited in the current user context. The a-priori
methods make use of evidence on how often and when pages have been visited,
the a-posterior methods take into account how often pages are accessed together
with the currently visited page or set of pages. In addition to these two main cat-
egories, we discuss so-called propagation drift methods, which aim to improve how
propagation methods take changes in user habits and interests into account. As
explained in the previous section, we only consider methods that exploit the users’
navigation history and do not require any other external evidence.

Further, we analyze the complexity of the methods and discuss relevant litera-
ture on how they have been used in practice. Finally, we explain how the individual
revisitation methods can be combined into revisitation workflows and briefly intro-
duce the publicly available framework SUPRA, which implements all techniques
discussed in this chapter.

4.1 A-priori Prediction Methods

Methods of this type aim to estimate the overall, prior probability that an al-
ready visited Web page will be re-accessed in the next page request. This overall
probability is then used for ordering Web pages in such a way that higher ranks
are assigned to pages that are more likely to be revisited. Therefore, we call the
probability estimations ranking scores and the methods used to produce these es-
timations ranking methods.

Most of these ranking methods exploit the observation from Catledge and
Pitkow [13] that revisits typically involve frequently and/or recently visited pages
(see Section 2). Three types of ranking methods can be distinguished, based on the
way the navigation history is modeled: event-based methods represent the users’
history by the request indices (Definition 1), ignoring the time elapsed between
any two requests; time-based methods make use of the exact timestamps of pre-
vious page visits (Definition 2); finally, there are hybrid methods that exploit a
combination of both approaches.

4.1.1 Event-based Ranking Methods

These techniques interpret the navigational history of a user as a sequence of
events. They rank the visited pages based on the number of times that they have
been visited and/or the number of events (page requests) between the visits to
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these pages and the latest recorded event. This means that they do not exploit
the actual time of the visits, only the request indices of a page in the navigation
history. More formally:

Definition 4 An event-based ranking method is a function that takes as input
a page pi ∈ P, its request indices Ipi = {i1, i2, . . . , ik} together with the index
n of the latest request rn and produces as output a value vpi ∈ [0, 1]7 that is
proportional to the probability of pi being accessed at the next page request, rn+1

(the closer vpi is to 1, the higher is this probability).

The simplest methods of this category rely exclusively either on the recency
or the frequency of page visits. The most common method that exploits recency
is called last recently used (LRU). It simply orders visited pages in chronological
order, with the top ranking given to the latest visited page. More formally, the
ranking score assigned to pi is derived from the following formula:

LRU(pi, Ipi , n) =
1

n+ 1−max(Ipi)
.

By contrast, the most frequently used (MFU) method exclusively considers the
popularity, or rather the frequency of use, of a page. Essentially, it sorts the visited
pages by the number of request indices (the number of visits to the page), in
descending order. More formally:

MFU(pi, Ipi , n) =
n

|Ipi |
.

More elaborate techniques combine the recency and frequency of use in their
assessments. Most of these methods can be expressed as a decay ranking model,
which was originally presented in [42]. This model ranks each Web page pi after n
requests based on the number of request indices, applying a decay function to give
lower influence to page requests from the more distant past. The generic formula
for decay ranking models is as follows:

DEC(pi, Ipi , n) =
∑
j∈Ipi

d(j, n), (1)

where d(j, n) is a decay function that takes as an input the index j of a request
to pi, together with the index of the current transaction n, and gives as output
the contribution of this request to the total score of pi. Every valid decay function
should satisfy the following properties [16, 42]:

1. ∀ j ≤ n: 0 ≤ d(j, n) ≤ 1 ,
2. d(j, n) = 1→ j = n,
3. ∀ n′ ≥ n: d(j, n′) ≤ d(j, n) (a monotone non-increasing function).

There are three main families of decay functions that satisfy these properties:
polynomial (PD), exponential (ED) and logarithmic (LD) decay. Together with LRU

and MFU, they were all experimentally evaluated in [42]. The outcomes of the study
showed that PD consistently outperforms all other event-based ranking methods,
because it involves a smooth decay that harmonically balances the recency and

7 As explained in Section 4.1.4, this is ensured through normalization.
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the frequency of page visits. In contrast, ED favors recency against frequency,
with a steep decay that is practically equivalent to LRU; the slow decay of LD

favors frequency against recency to such an extent that it approximates MFU. For
this reason, in the remainder of this article we exclusively consider PD for decay
functions. For PD, the decay function d(j, n) in Formula 1 takes the following form:

d(j, n) =
1

1 + (n− j)α
, (2)

where α denotes the decay rate of the polynomial decay function. Rates larger than
1 convey a steep decay, which puts more emphasis on recency, while rates close to
0 promote the frequency of use, with d(j, n) ≈ 1

2 for α ≈ 0. In the latter case, all
page requests have a similar contribution to the ranking score of a page, regardless
of their recency, and therefore the resulting ranking will be the same as for MFU.

4.1.2 Time-based Ranking Methods

Similar to event-based ranking methods, time-based methods take into account the
frequency and/or recency of page visits. The difference is that time-based ranking
methods rely on the request timestamps of a page and derive the ranking scores
exclusively from them. Thus, the contribution of a page request ri to the ranking
score of a page pj depends on the time it took place (ti) and the time difference
between ti and the latest page request (tn). More formally:

Definition 5 A time-based ranking method is a function that takes as input a
page pi ∈ P visited in R, its request timestamps Tpi = {t1, t2, . . . , tk}, together
with the time tn of the latest request rn and produces as output a value vpi ∈ [0, 1]8

that is proportional to the probability of pi being accessed at the next page request,
rn+1.

Similar to event-based methods, time-based methods can be expressed as decay
ranking models, with polynomial decay (PD) as the most applicable implementation.

Both event-based and time-based methods treat the user’s navigation history
as a continuous sequence. The difference is that, in contrast to event-based meth-
ods, time-based methods implicitly group user navigation into sessions (see Defi-
nition 3): due to the elapsed time during a period of inactivity between sessions,
pages from earlier sessions receive a considerably lower ranking score than pages
from the current session. For this reason, time-based methods put slightly more
emphasis on within-session revisits, which typically aim at continuing work on
a task. As a drawback, the time-based methods are sensitive to long periods of
inactivity, such as weekend breaks.

4.1.3 Hybrid Ranking Methods

As explained in the previous section, event-based and time-based methods each
have their advantages and disadvantages. In practice, many ranking methods are
a hybrid of these two kinds, as they make use of both the request indices and
the timestamps of the page visits. This allows for methods that exploit both the

8 As explained in Section 4.1.4, this is ensured through normalization.
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continuous sequence of page visits (as represented by the request indices) and the
actual timestamp of the visits. The request index lends itself better for polyno-
mial decay methods, but the timestamp can be exploited for capturing temporal
patterns - apart from separating page visits into sessions, this allows for optimiz-
ing recommendations for pages that are usually visited at a particular time (such
as checking news in the morning) or on a particular day (for example planning
weekend activities).

More formally, hybrid ranking methods are defined as follows:

Definition 6 A hybrid ranking method is a function that takes as input a page
pi ∈ P visited in R, its request indices Ipi and its request timestamps Tpi along
with the time tn and the index n of the latest page request, rn. As output, it
produces a value vpi ∈ [0, 1]9 that is proportional to the probability of pi being
accessed at the next page request, rn+1.

Frecency (FR), the default mechanism of Mozilla Firefox for page recommen-
dations, is a hybrid method that uses a rather simple and intuitive time-based
mechanism for ranking pages based on their recency and frequency of use. All
page visits are placed in buckets according to their recency (less than 4, 14, 31
or 90 days, or older than 90 days). Visits in more recent buckets receive a higher
weight. The ranking score for each page is then calculated as the sum of weights
of all visits. FR is also partially event-based, as the ten most recent visits receive
a weight according to how the visit was initiated (e.g., by following a link, typing
a URL or clicking on a bookmark)10.

The weighting of FR is based on natural time intervals, but the method does
not exploit differences in user interests on different times of day, or days of the week
- such as reading the news in the morning or planning a weekend trip [1, 31]. A
straightforward and simple way to achieve this is to adapt MFU to only take visits
from a particular time window into account. This may be achieved by separating
each day in four buckets (morning, afternoon, evening, night) or to have two
separate buckets for weekdays and the weekend. Even finer-grained buckets can
be considered. However, this approach exclusively considers page visits from the
current bucket, ignoring a large amount of pages that are visited regardless of the
time of day (such as reference sites or search engines).

In this work, we consider a number of variations of polynomial decay (PD) that
boosts page visits corresponding to the relevant time window by reducing the
decay rate by 50%. The hybrid day model (HDM) boosts past page visits that took
place on the same day of the week. The hybrid hour model (HHM) separates each
day into buckets of one hour each and boosts the current hour. The hybrid quarter

model (HQM) separates each day into four parts: morning (6am to 12pm), noon
(12pm to 6pm), evening (6pm to 12am) and night (12am to 6am). All models have
in common that they deliver higher ranking scores to pages that are visited on the
same day of week or on the same part of day, but consider page visits from other
buckets as well (α remains unmodified).

9 As explained in Section 4.1.4, this is ensured through normalization.
10 For more details, see https://developer.mozilla.org/en/The Places frecency algorithm.
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4.1.4 Complexity of Ranking Methods

As explained above, most of the ranking methods process and retain the entire
navigation history of all Web pages in order to estimate their ranking scores. Thus,
their overall space complexity is equal to O(|P|+ |R|). Their time requirements are
determined by two procedures: (i) the process of iterating over all page requests
in order to estimate the ranking scores, and (ii) the normalization process that
iterates over all visited pages in order to restrict their ranking scores to the interval
[0, 1], by dividing it by the highest score. Therefore, their overall time complexity
is equal to O(|P|+ |R|).

The only exceptions to these rules are LRU and MFU. They merely need to
record a single counter for every visited page, thus having an overall space com-
plexity of O(|P|). Similarly, their time complexity is significantly lower than the
other ranking methods, as they need to iterate over the visited pages just once,
i.e., O(|P|). In fact, the number of computations saved by LRU and MFU is equal
to |R|−|P|. This means that the lower the ratio |P|/|R|, the fewer pages are never
visited and the more computations are saved by LRU and MFU.

4.1.5 Applications of Ranking Methods

In the above sections, we elaborated on the basic functionality of ranking methods.
In practice, tools that support revisitation (not only in the context of the Web)
modify the functionality of ranking methods in order to adapt them to the appli-
cation at hand. We already discussed the Frecency method, which is integrated
into the Firefox browser and uses tailored buckets and corresponding weights.
Another example is the CRF approach (CRF stands for Combined Recency and
Frequency), a variation of the exponential decay ranking method that is crafted
for cache management [33].

The Adaptive algorithm, which filters menu items in software like MS Office
2000, is basically an implementation of MFU that also takes into account recent
periods, during which a menu item has not been used [8]. SR&F is a hybrid form
of LRU and MFU, as it ranks the first n items with the former and the rest with
the latter [21]. In [11], the authors propose a scoring mechanism based on a decay
model that combines frequency with recency in order to predict the start of a new
task - or navigation session.

Recently, the AccessRank algorithm was proposed in [22] for predicting re-
visitation of Web domains as well as window switching in desktop environments.
AccessRank combines CRF with a custom weighting scheme that is based on the
same rationale as our hybrid ranking methods: it promotes the contribution of past
page requests that occurred on the same time of day or on the same day of the
week as the latest page request. AccessRank also takes special care of the stability
of the recommended pages, so that users can anticipate the ranking of the most
important items - as explained in Section 2.2, this leads to improved support for
common activities, though at the cost of a limited coverage of visited pages.
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4.2 A-posterior Prediction Methods

The ranking methods, as discussed above, exploit in various ways that revisits
focus on a small number of frequently or recently visited pages and do not take
the users’ current context into account. From the revisitation studies discussed in
Section 2.1, we know that particularly long-term revisits involve reoccurring tasks
or routine behavior, which often consists of trails of related pages that are revisited
together [11, 22].

A-posterior prediction methods aim to identify groups of pages that typically
co-occur within the same session - but not necessarily in the same order. Pre-
dictions are based on the ‘evidence’ formed by (a selection of) the pages already
visited during the current session. As these methods propagate the probability
of revisitation between co-occurring pages, we call them propagation methods. We
formally define them as follows:

Definition 7 A propagation method consists of two functions: (i) the update

function, which takes as input a session Si and adjusts the degree of connection
between its last visited page pn and all other pages accessed during Si, and (ii)

the association function, which receives as input a pair of visited pages, pk and pl,
and produces as output a value vkl ∈ [0, 1] that is proportional to the probability
of pl being accessed immediately after pk (the closer vkl is to 1, the more likely
the transition pk → pl is).

Essentially, all propagation methods maintain a data structure that captures
the chronological patterns in the navigational activity of users. The most compre-
hensive representation of this data structure is a two-dimensional matrix, called
propagation matrix (M). Its rows and its columns correspond to the Web pages that
have been visited by the user so far (P). Each cell in M stores the weight of the
link between the corresponding pages - except for the diagonal cells, which are all
set to 0, i.e., ∀pi ∈ P: M(i, i) = 0 (the reason for this convention is analyzed in
Section 4.3). Given the propagation matrix M, the association function of Defini-
tion 7 can be seen as a function that simply returns the weight of the cell M(i, j),
when receiving the pair of pages pi and pj as input.

The individual propagation methods differ only in their update functions,
which specify the weights that are stored in M. We distinguish the propagation
methods into two subtypes, depending on the way they model the activity of a
session: order-preserving methods take the order of requests into account, assum-
ing that pages are typically revisited in the same order; order-neutral methods
follow the assumption that revisits can occur in any order. We will discuss the
corresponding update functions in the remainder of this section.

4.2.1 Order-Preserving Propagation Methods

The assumption behind order-preserving propagation methods is that when people
revisit a set of pages for a particular purpose, they usually visit them in - more
or less - the same order, which is inherent to the task that they carry out. This
behavior can be modeled by a transition matrix (TM): for each pair of pages pi
and pj , the corresponding value cell TM(i, j) is proportional to the number of
times that pi has been visited earlier than (but not necessarily directly before) pj
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within the same session - and vice versa for TM(j, i). As a consequence, TM is a
non-symmetric matrix.

The difference between the various order-preserving propagation methods lies
in the selection of the pages to take into account (varying from all pages visited in
the session thus far to only the previous page) and how each page is weighted. We
now illustrate the functionality of several variations of TM with a walk-through
example that consists of 4 Web pages (A,B,C,D) and the session S1 : A → B →
C → D → A. Based on how the weights of page associations are defined, we identify
the following 4 types of TM:

1. The simple transition matrix (STM) is based on the assumption that page re-
visits tend to occur in the same strict order. Hence, it works as a first-order
Markov model, incrementing the value of TM(i, j) by one for each transition
pi → pj . As an example, consider Figure 1(a), which depicts the values of STM

after the last transition of S1.
2. The continuous transition matrix (CTM) supports page revisits that take place

in a similar order, but not necessarily in exactly the same sequence (e.g., pi →
pj → pk and pi → pk). Hence, it associates each Web page of a given session Si

with all the previously accessed ones. In our example in Figure 1(b), transition
D → A causes A to be associated with all Web pages previously visited in the
session, incrementing the corresponding cells by one.

3. The decreasing transition matrix (DTM) lies in the middle of STM and CTM,
supporting evenly requests that occur in the same or in similar order. DTM

associates each Web page pj of a given session Si with every page pk that
was previously accessed, but increments the value of TM(j, k) with a decay
parameter that is inversely proportional to the distance between them (the
number of page requests between them). Continuing our example, Figure 1(c)
depicts the entire DTM after the transition D → A. Note that TM(C,A) is
incremented by 1/2 after D → A, as C is two steps away from A in S1.

4. The increasing transition matrix (ITM) is the inverted version of DTM. Given a
session Si, it creates stronger connections between pages that are more distant
in Si, in an effort to identify the final destination of Si. By boosting the ranking
score of the final page early enough, ITM tries to reduce the length of the trail
of possibly irrelevant pages that the user visits before reaching its actual page
of interest - as discussed in Section 2.1, users often have to search again for
pages that were visited in the more distant past [40]. Hence, the value added
to TM(j, k) increases proportionally to the distance between pages pj and pk.
The propagation matrix corresponding to session S1 is shown in Figure 1(d).

4.2.2 Order-Neutral Propagation Methods

In contrast to the order-preserving propagation methods, order-neutral methods
assume that sets of pages that are regularly revisited together may not be revisited
in the same order. For example, consider a returning task, such as planning the
summer holidays: it may not matter whether one first books the flight and then
the hotel, or the other way round. Therefore, pages that are visited in the course
of a session Si should be equally connected with each other, regardless of their
relative position in Si and the number of transitions between them.
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Fig. 1 The values of several types of propagation matrices after the last page request of the
session S1 : A→ B → C → D → A.

The assumption of order-neutrality is modeled as an association matrix (AM),
which is built by associating all pages visited in a single session with each other.
This means that every Web page is connected not only with the pages preceding it,
but also with those following it. As a result, AM is a symmetric matrix: ∀pi, pj ∈
P : AM(i, j) = AM(j, i). Continuing our example, Figure 1(e) depicts the AM

corresponding to the session S1.

4.2.3 Propagation Drift Methods

The habits and interests of users change constantly over time, a phenomenon
that is called concept drift [31]. This trait is supported by the ranking methods
that consider recency: by gradually decaying the contribution of past page visits,
they adapt to changes in the navigational patterns of the Web user. Propagation
methods support concept drift only to a limited extent: the matrices continue
to learn about (changes in) the user’s interests and habits, but this will happen
only slowly - in particular for users with a large navigation history. The reason is
that the contribution of the most recent transitions is equal to that of the oldest
ones. In order to better support sudden changes, we need techniques that make
propagation matrices more dynamic and adaptive.

These techniques are called propagation drift methods and can be distinguished
in two major subtypes: decay-based methods, which gradually reduce the contribu-
tion of past page transitions (similar to the decay ranking methods), and window-

based methods, which use a sliding window of a particular size to discard older
transitions [31]. Decay-based methods have the advantage that older transitions -
which still might be useful at a later point - are not discarded; therefore, decay-
based propagation methods are probably more precise than the window-based
ones. However, the decay-based methods have a space and time complexity that is
quadratic to the number of visited pages (O(|P|2)), as their decay function should
be applied to all transitions between every pair of pages. For this reason, we limit
our discussion to window-based drift methods.

The functionality of window-based methods is very basic: they simply identify
the requests that fall outside the sliding window and remove their contribution
to the weights in the propagation matrix. In this way, they add nothing to the
space requirements of the propagation matrix, while their time complexity is linear
with the number of page visits. In addition, window-based methods enhance the
computational efficiency of propagation methods, as they reduce the number of
(non-zero) page associations and, consequently, the number of calculations needed
for the propagation of ranking scores.
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We will consider two main types of window-based drift methods. First, event-

based methods define the window size in terms of the number of retained requests.
We define them formally as follows:

Definition 8 Given the page requests R of a user and a propagation matrix M,
an event-based drift method with a window of size w updates the weights of the
page connections stored in M so that they reflect the latest w page requests in R.

In this paper, we will evaluate two event-based drift methods: 500-requests

(5HR) and 1000-requests (TR). As their names suggest, they take into account the
500 and the 1,000 latest page transitions in R.

Time-based drift methods base the window size on an actual time span. There-
fore, they are more suitable for supporting tasks or activities that reoccur on a
regular basis (for example hourly, daily, weekly and monthly) and not after a
certain amount of page visits. We formally define them as follows:

Definition 9 Given the page requests R of a user and a propagation matrix M,
a time-based drift method with a window of size t updates the weights of the
page connections stored in M so that they reflect the page transitions of R that
occurred within the latest t temporal units11.

In this paper, we consider day (DM), week (WM) and month drift methods (MM).
They update the underlying propagation matrix so that it maintains the transi-
tions that took place within the latest day, week or month. These ‘natural time
intervals’ are in line with the distinction between short-term, medium-term and
long-term revisits in [40].

4.2.4 Complexity of Propagation Methods

The space requirements of the propagation methods are determined by the size of
the propagation matrix M, in which the weights of page associations are stored.
Given that each dimension corresponds to all pages visited so far, its complexity is
equal to O(|P|2). The time complexity of the association function is constant (i.e.,
O(1)), as it merely returns the value of a cell in M. For the update functions, the
time complexity is equal to O(|Si|), as in the worst case, they have to update the
weight of the latest page in Si with all others (the same applies to the propagation
drift methods). The only exception to this rule is STM, in which updates have a
constant time complexity, modifying the value of a single cell (i.e., O(1)).

After every page request, the propagation method calls the association func-
tion for every pair of visited page in order to retrieve the corresponding weights.
Theoretically, this is a quadratic process (i.e., O(|P|2)) - regardless of the up-
date function that produced M. In practice, though, its computational cost can
be significantly restricted by using graphs for the implementation of propagation
matrices. In this case, it suffices to call the association function only for the edges
of the graph, which indicate the pages that co-occur within the same session; for
all other pairs of pages, their degree of association is zero. Given the high spar-
sity of the resulting graphs, the efficiency of propagation methods is significantly

11 A temporal unit is measured in milliseconds and expresses any time interval, ranging from
seconds, minutes and hours to days, weeks and months.



18 George Papadakis et al.

enhanced. The actual degree of sparsity, though, depends on the underlying prop-
agation method. Figure 1 demonstrates that, for the same session, STM yields the
most sparse propagation matrix, while AM creates the largest number of links. All
other methods lie between these two extremes, producing graphs of the same size.

4.2.5 Applications of Propagation Methods

Propagation methods aim to capture sequential patterns and co-occurring events
and are widely used in the literature. For example, the authors in [43] use a CTM

as a basis for their recommendation algorithms. Of the methods that we discussed,
the simple transition matrix - which is essentially a first-order Markov model - is
particularly popular [7, 18, 20, 46, 54, 55]. The STM was also employed in [9] for
feeding transition frequencies as features into Support Vector Machines (SVM) in
order to predict unseen patterns. Another hybrid Markov process was employed
in [14] to take into account the creation, splitting and closing of browser tabs -
which are assumed to constitute parallel tasks and subtasks. Markov models are
also one of the three main components of the AccessRank algorithm [22] and lie
at the core of the context-sensitive mechanisms of SmartFavorites [11], as well.

Association rules (AR) are an alternative, well-established method for effectively
identifying revisits that regularly occur together [4, 6]. AR do not take the order
in which they occur into account, but may involve rules that use several pages as
their conditional element. Numerous variants of AR have been investigated, among
others in [3, 24, 38, 45, 53]. Most of them coped with efficiency issues related to
learning and updating the rules for larger navigation histories [5]. An alternative for
AR, Frequent Sequences [26], exploits the set of transitions between Web pages that
occurred within a session with a minimum amount of support. A more flexible form
of the previous technique are Frequent Generalized Sequences [25], which make use
of wildcards; experimental results suggest that plain Frequent Sequences perform
better in revisitation prediction.

Of the propagation methods discussed earlier, the functionality of the associa-
tion matrix comes closest to association rules. AM overcomes the disadvantage of
AR that they require expensive updates of the rules after each page visit. Further,
AM allows for recommending rare, non-obvious and serendipitous page trails that
would never reach the minimum support level in AR - then again, AR can capture
more complex and elaborate sequences than AM.

Drift methods are typically used in the context of recommender systems: in [37],
the authors present a software assistant for scheduling meetings, which employs
a time frame in order to adapt quickly to the changing preferences of the user.
Another system for learning drifting user profiles through Web and e-mail activity
is presented in [17]; NewsDude [10] incorporates concept drift in its news recom-
mendation service. A personalized Web search engine that supports evolving user
profiles was introduced in [47]. Of particular interest is also the integration of con-
cept drift in recommender systems that are based on collaborative filtering [19, 30].

4.3 Creating Revisitation Workflows

In the preceding sections, we discussed three kinds of revisitation prediction tech-
niques. Ranking methods estimate whether a page will be revisited based on the
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frequency and/or recency of previous visits. Propagation methods aim to identify
pages that are typically revisited together - not necessarily in the same order.
Propagation drift methods specifically address changes in habits and interests of
users over time.

As these groups of methods capture complementary patterns in the user’s
navigation history, the predictive accuracy of their methods can be enhanced by
combining them into revisitation workflows. For convenience of presentation, we
separate the workflows into three steps, which correspond to the three kinds of
revisitation prediction techniques.

A revisitation workflow can be created by selecting one or more methods from
each category. Not all combinations are useful, though: drift methods, for example,
cannot be used in isolation, as they are only useful when combined with a propa-
gation method (as explained in Section 4.2.3). In the remainder of this paper, we
will evaluate variations of the following three types of workflows:

– One-step workflows comprise single revisitation prediction techniques. These
can be either ranking or propagation methods. We will refer to workflows of
the former type as R and of the latter type as P.

– Two-step workflows involve methods from two different categories. They either
combine ranking methods with propagation methods (R+P) or propagation
methods with drift methods (P+D).

– Three-step workflows combine methods from each category and are represented
by R+P+D.

In total, we consider five types of revisitation workflows: R, P, R+P, P+D and
R+P+D. In each workflow, one can include multiple ranking, propagation or drift
methods. For simplicity, though, we exclusively consider flat workflows, in which
at most one method from each category is chosen. In the next section, we will
evaluate the effectiveness and efficiency of a representative set of such workflows.

There are several ways to combine the individual methods into a two-step or
three-step workflow. We have chosen the following approach for three-step flat
workflows: after each page request, the selected ranking method estimates the
ranking scores of all visited Web pages. Further, the corresponding weights in the
propagation matrix are updated - these weights are then used for spreading the
current ranking scores to co-occurring Web pages. This is done through a linear
scheme that increments the propagation score of a page pj as follows:

cj = cj + p(i, j) · vi, where

– cj is the propagation score of pj .
– p(i, j) is the transition probability from page pi to page pj , derived from

p(i, j) = M(i,j)∑|P|
k=0

M(i,k)
, and

– vi is the ranking score of pi.

After the propagation method has completed its processing, the overall score of
each Web page is calculated as the sum of its ranking score and its propagation
score. Subsequently, the overall scores are normalized to the interval [0, 1] - these
scores, in descending order, are used for sorting the pages based on the estimated
probability that they will be revisited. As a final step, the selected drift method
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Table 1 The major (sub)types of revisitation prediction techniques.

Ranking Methods

event-based

Least Recently Used (LRU)
Most Frequently Used (MFU)
Polynomial Decay (PD)
Exponential Decay (ED)
Logarithmic Decay (LD)

hybrid

Frecency (FR)
Hybrid Day Model (HDM)
Hybrid Quarter Model (HQM)
Hybrid Hour Model (HHM)

Propagation Methods
order-preserving

Simple Transition Matrix (STM)
Continuous Transition Matrix (CTM)
Decreasing Transition Matrix (DTM)
Increasing Transition Matrix (ITM)

order-neutral Association Matrix (AM)

Propagation Drift Methods

event-based
500-requests (5HR)
1000-requests (TR)

time-based
Day-model (DM)
Week-model (WM)
Month-model (MM)

adjusts the weight of page associations by applying the chosen sliding window -
these associations will be used as propagation scores in the next step.

Note that this linear propagation scheme ensures that the higher the ranking
score of a page, the more the pages associated with it are boosted and the more
their ranking is upgraded. This functionality slightly resembles the processing of
PageRank, but there is a fundamental difference between them: our approach
propagates the ranking scores of each page only to its direct neighbors, whereas
RageRank propagates the ranking scores to more distant nodes, performing mul-
tiple iterations until convergence.

Note also that we assume that all diagonal cells of a propagation matrix M -
which represent transitions from one page to itself, for example caused by a ‘refresh’
- are set to 0 (i.e., ∀pi ∈ P : M(i, i) = 0). Preliminary experiments demonstrated
that non-zero diagonal cells mainly cause that the scores of top-ranked pages are
reinforced, which reduces the effect of boosting the overall score of co-occurring
Web pages - the main goal of propagation methods.

The operation of two-step workflows is the same, skipping only the functionality
of the missing step. Note that there is a clear trade-off between the predictive
accuracy and the space and time complexity of these workflows. In Sections 5.2
and 5.3, we will demonstrate that adding a propagation method to a workflow
increases substantially the accuracy at the cost of higher execution time and higher
memory requirements. Therefore, when defining and implementing revisitation
workflows, one should consider the time requirements as well as the resources that
are available to their application.

In order to support developers in implementing revisitation workflows, and to
encourage researchers to experiment with different revisitation workflows, we have
publicly released the SUPRA framework, which is a Java implementation of the
functionality described in this section12 [41]. The framework contains implementa-

12 SUPRA stands for “SU rfing PRediction FrAmework”. The code is publicly available at
http://sourceforge.net/projects/supraproject.



Methods for Web Revisitation Prediction: Survey and Experimentation 21

tions of the revisitation prediction methods discussed in this chapter (see Table 1)
and methods for creating revisitation workflows, as discussed above. Methods from
the same category expose the same interface, requiring the same form of input
and producing the same form of output. Therefore, they can be used collectively
and interchangeably, creating revisitation workflows of arbitrary complexity. The
structure of the framework allows for a-priori estimating its requirements and per-
formance. The set of revisitation methods can be extended with new mechanisms
by ensuring that the implementation complies with Definitions 4 or 9.

5 Evaluation

In this section, we evaluate the effectiveness and efficiency of the revisitation pre-
diction methods discussed in the previous section. Apart from the individual meth-
ods, we also investigate revisitation workflows that involve two or three methods.
The effectiveness (predictive performance) is evaluated in two conditions: the ‘nor-
mal’ condition (Section 5.2.1), in which all visited pages are kept in the navigation
history and the ‘optimal’ condition (Section 5.2.3), in which pages that will never
be revisited again are removed from the user’s navigation history. We compare
and analyze the performance of the most common workflows with one another,
identify the most accurate workflows and analyze the factors that influence the
performance of the workflows (Section 5.2.2). We also compare the relative time
efficiency of the most accurate workflows in Section 5.3. We end this section with
a discussion of the findings and future directions in Section 5.4.

5.1 Preliminaries

In this section, we present the data collections that are used in our experiments,
we explain the setup of our experimental study and we define the metrics that
measure the effectiveness and the efficiency of revisitation workflows.

5.1.1 Datasets

For our experimental evaluation, we employed two large-scale, real-world datasets.
Both of them are publicly available and can be used as benchmarks13. The main
characteristics of both datasets are summarized in Table 2.

The smaller dataset, symbolized by DHT , was originally used in [40, 52]. It
comprises the activity of 25 users (19 male and 6 female) with an average age
of 30.5 - individual ages ranged from 24 to 52 years. The Web activity of all
participants were logged for some period between August, 2004 and March, 2005.
On average, their activity was recorded for a period of 104 consecutive days, with
a minimum of 51 days and a maximum of 195 days. All participants were logged
in their usual contexts: 17 at their workplace, 4 both at home and at work, and
4 just at home. In total, 137,737 page requests were recorded, with half of them
corresponding to revisits. The participants visited more than 65,000 distinct Web
pages, of which only 28% were revisited. The page requests were grouped into
4,715 off-line sessions with an average session length of 29 page visits.

13 http://sourceforge.net/projects/supraproject
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Table 2 Descriptive statistics of the datasets employed in our experimental evaluation.

DHT DWHR

Users 25 180
Logging Period (days) 104.97 ± 32.41 104.59 ± 105.19
Page Requests 137,272 2,470,779
Revisitation Requests 69,631 (50.72%) 938,388 (37.98%)
Distinct Web Pages 67,641 1,532,391
Revisited Pages 19,380 (28.65%) 218,938 (14.29%)
Sessions 4,715 21,431
Av. Requests per Session 29.11 115.29
Av. Revisitation Entropy 7.41 ± 1.13 7.54 ± 1.67
Av. Navigation Entropy 9.71 ± 1.23 11.13 ± 1.86

The larger dataset, denoted by DWHR, was collected through the Web His-
tory Repository initiative. It contains the navigational activity of 180 users who
contributed at least 1,000 page requests. We do not have any demographic infor-
mation about the volunteers (such as age and gender), as they offered their data
anonymously. The recorded navigational activity spans the time period between
September, 2009 and June, 2011, with every user logged for 105 days, on average.
The distribution of the logging period per user varies greatly, ranging from a few
days to 14 months. In total, around 2.5 million page accesses were recorded, with
more than one third of them constituting a revisit. In total, the users visited 1.5
million distinct Web pages, of which less than 15% were revisited. The page re-
quests are partitioned in 21,431 on-line sessions with an average session length of
115 page visits.

In both datasets, the navigational activity is unevenly distributed among the
individual users: some of them visited a few hundred distinct pages in the course of
few and short sessions, while others visited tens of thousands of pages over much
longer sessions. Yet, DHT and DWHR are quite different from one another in the
main aspects of revisitation, reflecting remarkable changes in users’ navigational
activity in the about 6 years that lie between the periods in which the data for
DHT and DWHR was collected: the revisitation rate in DWHR is 25% lower than
in DHT ; the portion of revisited pages in DWHR is even 50% lower. The two
datasets are also substantially different in terms of navigation entropy, a measure
that quantifies the diversity of a user’s navigational activity with respect to the
frequency of visits to the accessed pages: Table 2 indicates that, on average, every
page request targets one of (29.71≈) 838 candidate Web pages in DHT and one of
(211.13≈) 2,241 possible destinations in DWHR. Nevertheless, both datasets have
similar values for revisitation entropy, a measure that assesses the average diversity
of a user’s revisitation activity: Table 2 indicates that, on average, every revisit in
DHT targets one of (27.41≈) 170 candidate Web pages, whereas a revisit in DWHR

targets one of (27.54≈) 186 candidate pages. We explain the effect of these two
measures in more detail in Section 5.2.

5.1.2 Setup

We simulated the navigational activity of each user independently from one an-
other by ‘replaying’ their navigation history, repeating the procedure for each
navigation prediction workflow listed in Table 1. For every page request, a ranked
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list of pages from the URL vocabulary was calculated using the current prediction
method. If the page request was a revisit, the ranking position of the correspond-
ing Web page was recorded for calculating the effectiveness scores - the measures
are introduced after this section. If the visit involved a page not visited before,
this page was added to the list of visited pages and the ranking of all pages was
updated according to the selected revisitation workflow.

We carried out the experiments in two different settings: the Full Search Space

(FSS), which adds all pages that a user visits to the URL vocabulary, and the
Optimized Search Space (OSS), in which all pages that will not be revisited again are
automatically ignored - for this, we use an ‘oracle’ that checks for each newly visited
page whether it will be visited in the future or not. The results of the OSS settings
allow us to explore the upper limit on the effectiveness and efficiency of each
revisitation workflow. We will further elaborate on this setting in Section 5.2.3.

All methods were fully implemented in Java, version 1.7. We used the open-
source library JUNG14 for the implementation of graphs. For all workflows and
individual techniques relying on PD, we set the decay rate (α in Formula 2) at
1.25; this configuration was experimentally verified to yield the highest predictive
accuracy for PD [42]. All experiments were performed on a desktop machine with
Intel i7, 32GB of RAM memory, running Linux (kernel version 2.6.38).

5.1.3 Evaluation Metrics

As explained above, during the simulation of each users’ navigational activity, we
recorded the ranking position of each revisited page. Based on the list of ranking
positions for all revisits, we evaluate the effectiveness of the revisitation workflows
with the following metrics:

– Success Rate at 1 (S@1) expresses the percentage of revisits that involved
the page that was ranked first by the revisitation workflow. S@1 scores are in
the interval [0%, 100%], with higher values corresponding to higher predictive
accuracy.

– Success Rate at 10 (S@10) expresses the percentage of revisits that involved
a page that was listed within the top-10 ranking positions. The reason for using
S@10 is that users can only revisit one page - recommended or not - at a time
and only consider a limited number of recommendations [27].

Another common metric for measuring the effectiveness of recommendation
techniques is the mean reciprocal rank (MRR), the average of the inverse ranks
of all recommended items. We did not use this metric for two reasons. First, the
MRR also expresses differences in ranking in the long tail of lower-ranked recom-
mendations. As revisitation tools usually only display a limited, small number of
recommendations, we are more interested whether they are included in the top-n
ranking positions. Second, the revisitation prediction task is more difficult for users
with larger URL vocabularies; this implies that the average ranking of predictions
early on in the simulation will be higher than at the end of the simulation, an
effect that mainly affects lower-ranked pages.

Precision@k and Recall@k are two other common metrics that we did not use.
P@k indicates the number of correct predictions in a set of k recommendations and

14 http://jung.sourceforge.net
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R@k the number of relevant predictions in the set. As users will follow at most
one recommendation at a time, the P@k scores will be the same as S@k. Due to
the evolving URL vocabulary, recall is an impractical measure, as it is impossible
to determine the set of pages that are relevant for the user - except for the trivial
case in which we assume that only the actually revisited page is the only relevant
one, in which case also R@k will be similar to S@k.

To measure the difference in effectiveness between FSS and OSS, we employ
the metrics ∆S@1 and ∆S@10. Their values are always positive and express the
maximum possible increase in S@1 and S@10 that can be achieved in the ideal
settings of OSS. Formally, these metrics are defined as follows:

∆S@1 =
S@1m − S@1a

S@1a
· 100% and ∆S@10 =

S@10m − S@10a
S@10a

· 100%,

where S@1m (S@10m) represents the maximum S@1 (S@10) for the selected work-
flow, while S@1a (S@10a) stands for the workflow’s actual value for S@1 (S@10).
Note that ∆S@1 and ∆S@10 make sense only if S@1a and S@10a are non-zero.

To measure the efficiency of a revisitation workflow, we consider its mean rank-

ing time, which is symbolized by ¯trank. It is measured in milliseconds and expresses
the average time required by the selected workflow to update the ranking of the
URL vocabulary after every new page request. The lower its value, the more effi-
cient the corresponding workflow.

5.2 Effectiveness Experiments

All revisitation workflows have been applied to both datasets. Due to the high
number of possible two-step and three-step workflows, we only consider those
methods that involve the best-performing methods from the preceding step(s). For
instance, R+P is only represented by workflows that use PD as ranking method. For
estimating the effectiveness of workflows that only involve propagation methods P,
we combine its workflows with a naive scoring approach: after each page request,
the ranking score of all pages is 0, except for the currently visited page, of which the
score is 1. In this way, only pages that are associated with the latest visited page are
taken into account - in correspondence with Definition 7. The same configuration
was employed for the workflows of category P+D. As baseline methods, we consider
the basic revisitation techniques LRU and MFU, together with FR, which is widely
used in practice, being integrated into one of the most popular Web browsers.

Section 5.2.1 presents our analysis under the FSS settings, Section 5.2.2 presents
a statistical analysis of the main parameters that effect effectiveness, and Sec-
tion 5.2.3 examines the upper limits on effectiveness under the OSS settings.

5.2.1 Full Search Space

The outcomes of our analysis over DHT and DWHR under the Full Search Space
settings are presented in Tables 3 and 4. As we will discuss in more detail in
Section 5.2.3, the predictive performance for DWHR is lower than for DHT because,
on average, the methods had to work with a larger URL vocabulary.

Of the baseline methods, MFU and FR have the lowest performance for both
datasets; LRU performs consistently better, which indicates that recency is a better
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Table 3 Performance of the main revisitation workflows for DHT .

One-Step Workflows Two-Step Workflows

S@1 S@10 S@1 S@10

PD 20.33% 74.11% PD+AM 20.84% 76.13%
HDM 19.24% 71.31% PD+CTM 21.46% 75.94%
HQM 19.23% 70.70% PD+DTM 22.76% 80.88%
HHM 19.28% 70.13% PD+ITM 20.69% 74.23%

PD+STM 24.63% 82.35%

AM 19.07% 59.13% AM+5HR 19.07% 56.28%
CTM 19.29% 45.29% AM+TR 19.07% 57.80%
DTM 19.29% 50.11% AM+DM 18.91% 51.70%
ITM 19.29% 40.09% AM+WM 19.06% 55.48%
STM 20.60% 47.23% AM+MM 19.07% 58.18%

Three-Step Workflows Baseline Methods

S@1 S@10 S@1 S@10

PD+STM+5HR 24.58% 80.53% LRU 19.21% 71.26%
PD+STM+TR 24.59% 81.52% MFU 12.67% 32.19%
PD+STM+DM 23.93% 76.65% FR 12.57% 32.33%
PD+STM+WM 24.47% 79.62%
PD+STM+MM 24.62% 81.57%

Table 4 Performance of the main revisitation workflows for DWHR.

One-Step Workflows Two-Step Workflows

S@1 S@10 S@1 S@10

PD 9.46% 44.34% PD+AM 9.69% 48.27%
HDM 9.27% 43.42% PD+CTM 10.18% 50.94%
HQM 9.27% 43.24% PD+DTM 10.57% 59.56%
HHM 9.43% 44.19% PD+ITM 10.02% 47.55%

PD+STM 12.96% 60.68%

AM 8.92% 41.05% STM+5HR 13.58% 31.15%
CTM 9.83% 37.58% STM+TR 14.19% 35.64%
DTM 9.75% 40.19% STM+DM 10.61% 18.83%
ITM 9.83% 30.03% STM+WM 11.49% 21.53%
STM 14.45% 39.73% STM+MM 12.31% 23.82%

Three-Step Workflows Baseline Methods

S@1 S@10 S@1 S@10

PD+STM+5HR 13.02% 56.00% LRU 8.97% 41.44%
PD+STM+TR 13.06% 57.98% MFU 8.39% 30.40%
PD+STM+DM 10.51% 44.27% FR 8.79% 32.07%
PD+STM+WM 11.28% 44.77%
PD+STM+MM 11.86% 46.43%

predictor than frequency of use. The individual ranking methods in the one-step
workflows all perform better than the baseline methods, which confirms the in-
tuition behind PD and its variations that both recency and frequency should be
taken into account in the ranking process. The performance of the hybrid ranking
techniques HDM, HHM and HQM lies close to PD, but is still consistently lower.
This is a sign that the time of day or the day of week only play a limited role in
revisitation patterns.

Of the individual propagation methods in the one-step workflows, we observe
that the order-preserving simple transition matrix STM consistently achieves the
best performance in terms of S@1; the order-neutral association matrix AM consis-
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tently achieves best in terms of S@10. The lower performance of the more elaborate
propagation methods, which take all pages visited in the current session into ac-
count, suggests that the latest visited page is the most important predictor - this
is also supported by the observation that the decreasing transition model DTM is
the best-performing of the more elaborate methods. Apparently, it does not make
much difference whether one takes the order in which the pages are visited into
account: STM appears to be better for revisitation tools that only provide one
recommendation, but the order-neutral approach seems to be the best choice for
tools that suggest more than one - however, particularly for the DWHR dataset,
the differences between the propagation methods are relatively small.

In terms of S@1, the performance of the propagation methods STM and AM is
similar to the ranking method PD, but PD is superior in terms of S@10, scoring
26%±7 better in DHT and 6%±4 better in DWHR. This indicates that if one has
to select one single revisitation method, ranking methods are the better choice -
in addition, ranking methods have significantly lower space and time requirements
than propagation methods.

However, as we will discuss in more detail in Section 5.2.2, propagation methods
capture different aspects of user navigation. For this reason, it comes not as a
surprise that combining the two of them has a beneficial effect: in terms of S@10,
the two-step workflow PD+STM achieves best performance with 82% in DHT and
61% in DWHR - it is interesting to observe that in the two-step workflow PD+STM

outperforms the order-neutral PD+AM.
In contrast, combining propagation methods with drift methods, which impose

sliding windows of different length on the propagation matrices (see Section 4.2.3),
does not improve performance, as compared with propagation methods only. On
the contrary, the scores in terms of S@1 and S@10 are consistently slightly lower
than either STM or AM. The same yields for the three-step workflows that combine
PD+STM with propagation drift methods: the performance is worse than that of
PD+STM only.

The negative effect of drift methods seems to indicate that applying a sliding
window, to better accommodate changes in user habits and interests, does more
harm than good - the benefits of a larger navigation history are higher. However,
it might well be that drift methods are useful for very active users with a large
navigation history. To verify this, we calculated the Pearson correlation between
∆S@1 and ∆S@10 and the size of the navigation history of every user (here, S@1a
and S@10a correspond to the performance of the individual propagation method,
while S@1m and S@10m correspond to the two-step workflow). The resulting cor-
relation coefficients were in the interval [-0.2,0.2] across both datasets, indicating
little or no relation between the two. We applied the same analysis to the time-
based drift methods, estimating the correlation of ∆S@1 and ∆S@10 with the
logging period of every user, and got similar results. The same also applies to the
effect of drift methods on three-step workflows. In summary, the results confirm
the negative effect of limiting the navigation history and suggest that one should
use as much evidence as one can get from the navigation history.

5.2.2 Statistical Analysis

In the previous section we discussed the performance of various revisitation work-
flows, averaged among all users. In this section, we investigate to what extent the
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Table 5 Performance correlations between several pairs of revisitation workflows.

FR DM PD STM AM PD+STM PD+AM PD+TR

FR – .52 .51 .39 .59 .52 .56 .56
DM .52 – 1.0 .38 .58 .85 .96 .87
PD .51 1.0 – .38 .57 .85 .96 .87
STM .39 .38 .37 – .82 .68 .39 .63
AM .59 .58 .57 .82 – .74 .64 .73
PD+STM .52 .85 .85 .68 .74 – .85 .98
PD+AM .56 .96 .96 .39 .64 .85 – .89
PD+TR .56 .87 .87 .63 .73 .98 .89 –

performance varies per individual user and which user characteristics influence
the performance of revisitation prediction methods. For the analysis, we take the
S@10 scores for each individual user in DWHR as a basis.

To start with, we inspected the distribution of performance scores between in-
dividual users. All predictive methods followed a non-skewed normal distribution,
with standard deviations between 10.3 and 13.8. This indicates that the predic-
tions are suitable for the average user. Moreover, the correlations between the
method results for the users are significant with p < .01, albeit with R values vary-
ing from medium to very large effect sizes - see Table 5. FR and the individual
propagation methods AM and STM correlate least with the other methods, with
maximum values of R between .56 and .74. The PD-based methods (only PD or
combined with a propagation or drift method) correlate with one another with R

between .85 and .98, which suggests that the methods capture similar behavior for
the users.

To investigate which revisit characteristics influence the success of a predictive
method for individual users, we gathered several statistics of the users’ revisit be-
havior: the revisit rate (the ratio between revisited pages and the total number of
page visits), the average session length, the average revisit distance (the number
of page requests between revisits of a particular page), the amount of backtracking
and the entropy (unpredictability) within page visits and page revisits. Inspection
of the correlations between these measures showed that they are largely unrelated,
with no significant correlations between one another. The only significant correla-
tion (r = .70) is between the average revisit distance and the entropy measures.
In other words, users with low navigation and revisitation entropy mainly revisit
recently used pages.

We used the user characteristics for finding explanations for variations in per-
formance between users. First, we checked and did not find any effects of the users’
daily activity or the size of their logs on prediction performance, which confirms
that the experimental results were not influenced by differences in the sample
sizes for individual users. We found that the above-mentioned revisit character-
istics explained the differences in performance of the predictive methods only to
a certain extent - see Table 6. The table shows that the navigation entropy (R
between -.29 and -.74) and the revisitation entropy (R between -.40 and -.67) are
the best predictors for method performance. Further, the correlation coefficients of
a user characteristic with the different predictive methods follow similar patterns,
with weak positive correlations for the revisit rate, moderate positive correlations
for backtracking, and moderate to strong positive correlations for both revisit en-



28 George Papadakis et al.

Table 6 Correlations between user characteristics and prediction performance over DWHR.

FR DM PD STM AM PD+STM PD+AM PD+TR

Revisit Rate .41 .12 .11 .42 .31 .27 .11 .22
Backtracking .26 .43 .42 .49 .43 .42 .39 .40
Revisit Entropy -.74 -.51 -.49 -.29 -.48 -.47 -.57 -.58
Navigation Entr. -.67 -.52 -.51 -.40 -.52 -.55 -.59 -.66

tropy and page entropy. A linear regression model based on the user characteristics
explained a modest 34% of the variance in prediction performance.

The impact of the navigation and revisitation entropy on prediction perfor-
mance suggests that some gain may be achieved by cleaning the search space at
the end of the tail of the navigation history’s frequency distribution, by remov-
ing those pages that are visited only once and are never revisited. This will be
investigated in the next section.

5.2.3 Optimized Search Space

The analyses presented in the previous sections were based on the Full Search
Space, which involves the entire navigation history of the users. In practice, the
power-law distribution of the number of visits to each page dictates that the vast
majority of pages at the end of the tail (over 70%) are never revisited. If one would
have prior knowledge which pages are likely not to be revisited again, they could
be excluded in the revisitation prediction process. Excluding these pages would
remove the noise caused by these irrelevant pages and boost both effectiveness and
efficiency of revisitation workflows.

In this section, we examine the performance of all revisitation workflows under
the ideal settings of OSS, in which a revisitation oracle discards with 100% accuracy
the non-revisited Web pages right after the first (and only) access to them. We
illustrate the effect of this oracle in view of the average values for ∆S@1 and
∆S@10 it yields per workflow category. They effect of the oracle on S@1 and
S@10 is summarized in Figures 2(a) and (b).

A first observation is that the oracle has a similar, positive effect on the per-
formance of all revisitation workflows, with relatively comparable values for ∆S@1
and ∆S@10. In other words, removing the irrelevant pages from the search space
would make sense for all methods. The only exceptions - not displayed in Figure 2
- are FR and MFU, which do not improve significantly when combined with the
oracle: ∆S@1 = 0.24% and ∆S@10 = 0.94% for DHT and ∆S@1 = 0.44% and
∆S@10 = 3.23% for DWHR. This is not unexpected, as MFU and, to a somewhat
lesser extent, FR are frequency-based, which implies that non-revisited pages rarely
make it to the top ranking positions.

Comparing the average ∆S@1 and ∆S@10 among the two datasets, we observe
that there is a positive correlation between them: the higher the ∆S value for a
revisitation workflow in the DHT dataset, the higher is its corresponding value for
DWHR. In absolute values, both ∆S@1 and ∆S@10 are significantly higher for
DWHR in most of the cases. This may be explained by the increase in navigation
activity between the two datasets - see Table 2. In the older dataset, DHT , the
average number of pages visited per day was 52.29; in DWHR, collected six years
later, users visited on average 131 pages per day. As the revisitation entropy and
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Fig. 2 Average ∆S@1 and ∆S@10 for every category of revisitation workflows in (a) DHT

and (b) DWHR. R denotes the ranking methods, P the propagation methods, and D the drift
methods.

the navigation entropy remained stable, this means that the methods in DWHR

have to work with a larger URL vocabulary - and consequently with a far longer
tail of pages that were visited only once. In absolute numbers, the oracle restricts
the pool of candidate Web pages from 838 to 170 for DHT and from 2,241 to 186
for DWHR.

Note also that ∆S@1 exceeds ∆S@10 in practically all cases, thus implying
that the oracle is particularly useful when the goal is to provide the user with just
one recommendation. There is a simple explanation for this: the original values of
S@10 are substantially higher than those of S@1 across all revisitation workflows,
making it harder to further improve them. Therefore, an equivalent increase in
S@1 and S@10 is more recognizable for the former metric, due to its initial low
values.

Another interesting observation is that both ∆S@1 and ∆S@10 are highest
for those workflows that do not involve a ranking method - the categories P and
P+D. This pattern is consistent across both datasets - but stronger for DWHR -
and indicates that the weighted page associations of propagation matrices convey
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Fig. 3 Mean ranking time for the most accurate workflows over (a) DHT and (b) DWHR,
under both simulation settings. Note that the two diagrams use different scales.

high levels of noise in the FSS settings, which can be effectively cleaned by the
revisitation oracle. In contrast, the lower ∆S@1 and ∆S@10 values for the cate-
gories R, R+P and R+P+D indicates that the cleansing effect of the revisitation
oracle is moderate for workflows that involve a ranking method. The reason for
this effect is probably that the functionality of ranking methods resembles that
of the oracle: in essence, they distinguish the frequently revisited Web pages from
those that are highly unlikely to be revisited.

Having outlined the theoretical benefits of the oracle, we discuss how we can
put its functionality into practice in Section 5.4.

5.3 Efficiency Experiments

In Section 4, we already discussed the theoretical time complexity of revisitation
workflows. In this section, we investigate how this translates into actual computa-
tion times. For this purpose, we assess the minimum ranking times for the most
accurate workflows. To ensure that the computation times are comparable with
one another and to reduce the influence of external parameters, we repeated the
measurement of the ranking times for each workflow and for each individual user
ten times, making use of the setup described in Section 5.1.2. We report the mean
values of the results, separating the FSS and the OSS settings.
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Figures 3(a) and (b) show the mean ranking times for the most effective
revisitation workflows over DHT and DWHR, measured in milliseconds. Note that
the two scales in the diagrams are different from one another, partially due to the
higher number of candidate Web pages for DWHR - which we already observed
and discussed in Section 5.2.3. A second reason for the different scales is that we
selected AM as the propagation method for DHT and STM for DWHR - mainly
for illustrative purposes, as both methods had comparable results in terms of
effectiveness.

Comparing the FSS values of the results in (a) and (b), one can see that the
differences in efficiency of the different revisitation workflows are similar in both
datasets. The baseline method LRU is most efficient, closely followed by the ranking
method PD.

In line with the higher computational complexity, the workflows with one of
the propagation methods take significantly more time than the workflows without.
However, also between the propagation methods a difference can be observed be-
tween the order-neutral AM and the order-preserving STM. The reason for this is
that AM involves a significantly higher number of page associations than STM, as
it connects all pages that co-occur within the same session, whereas STM only con-
nects consecutively visited pages. Note that both AM and STM performed similarly
in terms of effectiveness - see Section 5.2

The workflows R+P - which produced the best prediction performance - have
the worst performance in terms of computational costs. This yields for both
PD+AM over DHT and PD+STM over DWHR. The reason for this is that the
combined ranking and propagation methods require recomputation of all page as-
sociations stored in the propagation matrix; for propagation-only workflows it is
sufficient to only update the associations of pages that are connected with the
currently visited page pn.

Applying a drift method to the workflow - we used the month model MM -
clearly reduces the needed time for computing the rankings. The reason for this
is simple: removing the outdated pages - in this case, pages that have not been
visited during the past month - keeps the ranking lists and propagation matrices
within limits. This positive effect in terms of computational efficiency comes at
the price of slightly lower prediction performance - see Tables 3 and 4.

The same differences between the workflows can be observed for the efficiency
results in the OSS condition. However, the most important observation is the
dramatic reduction of the computation time for each workflow - varying from
about 50% for LRU and PD over DHT to about 80% for PD+STM over DWHR.
Unsurprisingly, the improvement in efficiency is highest for the workflows that
involve propagation methods, which have complexity O(|P|2). It should be stressed
that the improvement in computational efficiency of the revisitation oracle, which
optimizes the search space by removing those pages that will never be revisited, is
far higher than the cleansing effect from the drift methods, which remove outdated
pages from the pool.

5.4 Discussion

In our study, we investigated the effectiveness (prediction performance) and the
efficiency (computational performance) of revisitation workflows consisting of one,
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two or three complementary methods. The results indicate that the combination of
ranking and propagation methods, (R+P), achieves the best results for the majority
of users, with S@10 of up to 82% for the best-performing combination PD+STM

for the DHT dataset. However, effectiveness comes at a cost: the combination of
ranking and propagation methods is computationally the most expensive workflow.

In Section 5.2.2, we showed that the performance of PD+STM for individual
users followed a normal distribution, and that the performance of all methods for
one user are positively correlated. Still, this does not imply that PD+STM would be
the best method for all users - for ‘non-average’ users an alternative revisitation
workflow might be beneficial. In order to find this out, we looked at the best-
performing workflows for each individual user in DHT and DWHR. In terms of
S@10, PD+STM was the optimal choice for 54 (26%) of the users. However, all
other workflows that performed best for more than two users (covering 73% of the
participants) were of the category P+R; second was the hybrid hour model HHM
combined with STM (8% of all users) and HQM+STM (6% of all users). As HHM

and HQM are variations on PD, and given the similar performance of the PD-based
ranking methods over both datasets, we can consider PD+STM to be a good choice
for the majority of users.

The computational cost of the successful but computationally expensive work-
flow R+P revisitation workflows can be reduced by introducing propagation drift
methods. These impose a sliding window on the navigational history and can-
cel out ‘outdated interests and habits’, do not improve predictive performance,
but they keep the required computation time in limits. Therefore, for balancing
effectiveness and efficiency, it is worth considering including a propagation drift
method in workflows that involve propagation methods.

A further important method for reducing the high space requirements for prop-
agation methods is to exploit the sparsity of the propagation matrices: in the nav-
igation history, only a small number of all possible page transitions actually took
place and the remaining cells have a value of zero. Therefore, in our implementa-
tion, we employed propagation graphs for modeling the propagation matrices. By
doing so, we reduced the absolute differences in memory consumption to negligi-
ble values: all propagation matrices require less than 2GB of memory for up to
50,000 distinct visited pages, whereas the ranking methods occupy about 25% of
this amount.

Finally, in Section 5.2.3, we showed the benefits in terms of both effectiveness
and efficiency of a ‘revisitation oracle’ that optimizes the search space by removing
pages that will not be visited again. However, we did not discuss how to approach
the functionality of an oracle in practice. The oracle can be thought of as a binary
classifier that categorizes every visited page as revisited or non-revisited. For
this classification task, there are several types of evidence that the oracle can
use. As we stated in the introduction, in this paper we limited the discussion to
features that can be derived from the (anonymized) user’s navigation history. In
a preliminary experiment, we found that a classifier that makes use of the scores
and rankings of individual pages - as well as of graph-based measures, including
the node-degree and page-rank score - reached AUC values between 0.6 and 0.7,
which is better than random, but still far from perfect.

However, other studies suggest that other types of evidence would be useful
for this task. In [2, 50] it was shown that there is a relation between page content
changes, the intent of visiting the page (for example, reference sites versus news
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site) and revisitation patterns. [40] showed that the function of a page within sites
is an important indicator, as well: most sites have one or more portal pages that
are revisited very frequently and a long tail of pages that are visited only once
or twice. Further, [23] found that longer dwell times on a page can be indicative
of its future utility. This is in line with the findings of [52], who also showed
that within-page navigation - particularly scrolling - is an important indicator of
user interest in the page content. Matching the semantics of the visited pages -
keywords and entities extracted from its title and content - with the remainder of
the user’s navigation history for content-based classification and recommendation
is a promising direction, as well [44]. This is supported by the findings of [1], who
found a relation between the content of a site and how often it will be revisited:
for instance, shopping and reference websites invoke fast revisits, whereas sites
involving weekend activities are visited only infrequently. We see this area as a
promising area for future research.

6 Conclusions

A significant amount of activities on the Web involves revisiting pages and sites
that have been visited before. Particularly for revisits to pages that are used on
an infrequent basis, improved support by (browser) history mechanisms is highly
desirable. In order to develop such tools, it is important to be able to predict which
pages will be revisited by users at a certain point in time. In this article, we inves-
tigated the predictive performance and computational efficiency of three different
kinds of revisitation prediction methods: ranking methods (R), which estimate the
overall, a-priori probability that a page will be visited, propagation methods (P),
which base their predictions on groups of pages that typically co-occur in sessions,
and propagation drift methods (D), which aim to reflect changes in user habits and
interests by imposing a sliding window on the navigation history.

We evaluated several variations of these kinds of revisitation prediction meth-
ods, and combinations of them, over two real-world datasets. The results indicate
that of the individual methods, the ranking method polynomial decay (PD) has the
best predictive performance and moderate computational complexity. The best
predictive results (with S@10 up to 80%) can be achieved by a revisitation work-

flow R+P that combines polynomial decay with the propagation method STM.
However, PD+STM also has the highest computational costs. These costs can be
reduced by imposing a sliding window through a propagation drift method, by
employing more efficient graph-based representations of the sparse propagation
matrices, or by removing pages that will not be revisited again using a ‘revisita-
tion oracle’.

The high predictive performance of the ranking and propagation methods con-
firms the importance of frequency and recency, as well as the current navigation
context in the prediction process. Taking the time of day or the day of week into
account does not improve - and in most cases slightly deteriorates - the results.
Apparently, Web revisitation is only to a limited extent driven by the actual time
of day. Similarly, taking changes in user habits and interests - as captured by the
D methods - into account does not improve predictive performance either (but, as
just discussed, they do improve the computational efficiency).
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The performance of revisitation prediction workflows for individual users mainly
depends on the entropy in the user’s navigation and revisitation patterns: some
users are more predictable than others - this observation is confirmed by the pos-
itive correlations between the performance of prediction methods between users.
The best-performing workflow PD+SMT is a good choice for the majority of users.

A promising area of future research is the optimization of the navigation his-
tory, by recognizing pages that probably will not be revisited and removing them
from the user’s navigation history. In our studies we used an ‘oracle’ as an op-
timal classifier. The literature suggests that such a classifier can be achieved by
taking additional features into account, including the dynamics and function of
web pages, the user’s dwell time and the content of the pages in the navigation
history.

Appendix: Notations And Acronyms

In the following, we summarize the symbols used in this work:
5HR → the 500-requests drift method
AM → an association matrix (order-neutral propagation method)
AR → association rules
CTM → the continuous connectivity transition matrix (propagation method)
DM → the day-model drift method
DTM → the decreasing continuous connectivity transition matrix (propagation
method)
ED → the exponential decay ranking method
FR → the Frecency ranking method
HDM → the hybrid day model (ranking method)
HHM → the hybrid hour model (ranking method)
HQM → the hybrid day quarter model (ranking method)
Ipi → the request indices of a page pi
ITM→ the increasing continuous connectivity transition matrix (propagation method)
LD → the logarithmic decay ranking method
LRU → the last recently used ranking method
M → the propagation matrix
MFU → the most frequently used ranking method
MM → the month-model drift method
P → a set of Web pages
P→ the category of one-step workflows that consist solely of a propagation method
P+D → the category of two-step workflows that combine a propagation method
with a drift method
PD → the polynomial decay ranking method
R → a set of page requests corresponding to the navigational activity of a user
R → the category of one-step workflows that consist solely of a ranking method
R+P → the category of two-step workflows that combine a ranking method with
a propagation method
R+P+D → the category of three-step workflows that combine a ranking method
with a propagation and a drift method
S → a session
STM → the simple connectivity transition matrix (propagation method)
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Tpi → the request timestamps of a page pi
TM → a transition matrix (order-preserving propagation method)
TR → the 1000-requests drift method
WM → the week-model drift method
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